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bear a marked resemblance to certain molybdenum
and tungsten compounds which we wish to dis-
cuss briefly at this time. Recently, complexes of gen-
eral formula M [MoOX,], M[MoOXj;], and M[WOX;]
were prepared® and characterized, where M is a uni-
valent cation and X is Cl or Br. From the chemical
and physical properties reported for these compounds,?
it is apparent that they are structurally very similar to
the rhenium analogs described by us. In fact, X-ray
studies by Rogers and Scane?® have verified that in
salts containing the (MoOBr,) moiety, the basic struc-
tural unit is the square-pyramidal (MoOX,) group, with
perhaps a sixth ligand (H,0) bonded weakly to the
molybdenum atom at the base. Moreover, a compari-
son of the (orthorhombic) unit cell parameters and space
groups of [(C,H;)aN][ReBr,O(H.0)]* and [(C,H;).N]-
[MoOBr(H;0)]% shows that they are in fact isomor-
phous and, in all probability, isostructural.

Thus, the oxotetrahalo complexes and their deriva-

(28) E. A. Allen, B. J. Brisdon, D. A. Edwards, G. W. A. Fowles, and
R. G. Williams, J. Chem. Soc., 4649 (1963).

(29) D. Rogers, Department of Chemistry, Imperial College, London,
private communication, Oct. 1965.
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tives of Mo(V) and W (V) are quite similar to the series
of Re(V) compounds reported by us, both in their
chemical and structural properties. In view of the
arguments presented?’ for the existence of strong O—
M 7 bonding in the rhenium compounds, it seems likely
that this feature also occurs in the molybdenum and
tungsten complexes. The degree of O—M = bonding
(and, presumably, the stability of the complex) osten-
sibly depends upon two factors: first, incomplete occu-
pancy of the d orbitals of the metal atom so that these
orbitals are able to receive electrons from oxygen atoms,
and, second, the high oxidation state of the metal atom,
so that the resulting complex does not have too great a
negative charge to stabilize, which it might perhaps do
by delocalization back through the # orbitals onto the
electronegative oxygen atom. In view of these two
criteria, it seems possible that square-pyramidal tetra-
halometallate complexes of Nb(V), Ta(V), Te(V), Ru-
(VI), and Os(VI) might be prepared under the appro-
priate conditions.

Acknowledgment.—We wish to thank the MIT
Computation Center for access to the IBM 7094 com-
puter.
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The preparation of [Co(AA):H:0]: and other hydrated derivatives of Co(AA),is discussed (AA = the acetylacetonate anion).
The structure of the former, determined by single-crystal X-ray techniques, is that of a centrosymmetric dimer, corresponding

to the center of the [Co(AA);]s structure with the missing bridge bonds replaced by bonds to water molecules.

A second,

triclinic, crystal form of the dihydrate, Co(AA)(H20),, has been isolated as well as a new compound which may be either

[Co(AA)]oH0 or [Co(AA).]sH:O.

Introduction

The solution chemistry of bis(acetylacetonato)cobalt-
(I1), Co(AA),, is rather complex. The tendency of the
cobalt to achieve six-coordination is pronounced and
appears to be the most important single structural prin-
ciple governing the behavior of these systems. In
donor solvents, the bis(acetylacetonate) reacts with
two donor molecules, D, to form the octahedral com-
plex, Co(AA):D,.* In noncoordinating solvents, spec-
troscopic?® studies have shown that Co(AA), exists as a
tetrahedral monomer in very dilute solution; both
spectroscopic®® and cryoscopic*® evidence indicate that

(1) (a) Supported by a grant from the National Science Foundation; (b)
National Institutes of Health Predoctoral Fellow, 1962-1964.

(2) G.T. Bullen, Acta Cryst., 13, 703 (1959).

(3) F. A. Cotton and R. H. Holm, J. Am. Chem. Soc., 82, 2979 (1960).

(4) (a) F, A. Cotton and R. H. Soderberg, Inorg. Chem., 8, 1 (1964); (b)
D. P. Graddon, Nature, 195, 891 (1962).

in more concentrated solutions octahedral coordination
is achieved through polymerization. Polymerization
has also been shown to occur in the solid [Co(AA)s].
formed by sublimation.® If a small amount of some
neutral donor ligand, D, is introduced into a solution of
polymer in a noncoordinating solvent, complex equi-
libria are established and the following types of com-
pounds can be obtained from such solutions: [Co-
(AA)2]4, [CO(AA)Q]QD, [CO(AA)QD]Q, and CO(AA)QDQ,
where D may be water, pyridine,® or cyclohexylamine.”

While attempts to crystallize consistently an anhy-

(58) F. A. Cotton and R, C. Elder, Inorg. Chem., 4, 1145 (1965). It isto
be emphasized that tetramers were found in the solid, whereas the solutions
were reported to contain either dimers* or trimers.?? This point will be
discussed in a later paper in this series.

(6) J. P. Fackler, Jr., ibid., 2, 266 (1963); J. Am. Chem. Soc., 84, 24
(1962).

(7) J. A. Bertrand, F. A. Cotton, and W, J. Hart, Inorg, Chem., 8, 1007
(1964),
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drous polymeric compound have met with only limited
success, crystals of [Co(AA);H,0]; have been isolated
and their structure is reported here. This work was
done principally to establish the over-all molecular
structure and does not lead to precise molecular pa-
rameters. At present, it is the general patterns of
structural changes among these molecules which we are
seeking to establish.

Experimental Section

Preparation of [Co(AA),H:0];.—In the course of a series of
attempts to prepare crystals of anhydrous cobalt(II) acetyl-
acetonate from solution, it was observed that the solubility of
the anhydrous material in noncoordinating solvents was much
greater than the solubility of the hydrated material. Whenever
an attempt was made to crystallize the anhydrous material,
cither no crystals were formed or those formed had the appear-
ance and properties of the dihiyrate. The solutions which did not
yield any solid could be concentrated by distilling off the solvent
at reduced pressure. However, some oxidation and/or decom-
position may have taken place? as the solutions often yielded an
oil on standing.

In one case, crystals were formed which did not resemble either
the dihydrate or the anhydrous material. A concentrated, pre-
sumably saturated, solution was made by the addition of the
anhydrous material to boiling toluene (previously distilled over
sodium) until additional solid remained undissolved.® The solu-
tion was filtered through a coarse glass frit in air, and the filtering
flask was placed in a desiccator with paraffin shavings to absorb
the toluene and with CaCl; to serve as a desiccant. After the
solution had cooled, crystals formed in the filtering flask. The
reproducibility of this method of preparation is poor.

A second and superior method allows crystals to be grown from
solution by a slow-diffusion process. A concentrated solution
(from 0.1 to 2.0 g/10 ml) of the anhydrous sublimed material in
benzene which had been previously saturated with water was
used to fill a 2-0z, wide-mouth jar. This jar was placed inside a
4-0z jar which was then filled slowly with isooctane, care being
taken to avoid mixing the solutions. The outer jar was then
capped and allowed to stand for several days. The jars were
filled almost to the brim, but no further cffort was made to ex-
clude air; a small amount of oxidation occurred yielding a green
product. After the solution had become almost homogerieous
(essentially the same color throughout), the jar was opened,
and the crystals which had precipitated were collected on a coarse
glass frit. Several distinct crystal types and compounds were
obtained and were mechanically separated under a microscope.

Co(AA)(H:0). was obtained in two orange crystalline forms.
One form had the unit cell constants reported by Bullen,3 and
the other was triclinic with ¢ = 5.55, b = 10.79, ¢ = 11.99,
a = 90.4°,8 = 114.6°, y = 102.8°. The infrared mull spectra
of both forms were the same, possibly because one form is con-
verted into the other by grinding.

[Co(AA).]y was obtained in an intensely purple dendritic
growth. The unit cell constants and mull spectrum were the
samme as those obtained with the sublimed material.s

[Co(AA)}:—sHAO is a light purple, crystalline substance with a
distinctive mull spectrum. The triclinic crystals have reduced
cell constants ¢ = 9.04, b = 10.55, ¢ = 19.52, o = 94.4°, 8 =
92.0°, v = 101.0°. As in all the hydrated forms, there is a
broad band at approximately 3300 cm ~! which may be attributed
to water. The analyses on this compound are such that it is not
easy to distinguish between the two formwlations. Anal.
Caled for [ColAA)]H,O: C, 45.12; H, 5.68. [Co(AA):];H,0:
C,45.64; H, 5.62. Found: C,45.57; H, 5.50. Further work
is in progress on this substance.

[Co(AA)H,0]; crystallizes in the form of blood-red rectangular
parallelepipeds. The crystals prepared by the first method

(8) Roughly 5 g of Co(AA)zin 5 ml of toluene,
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were the samme in all respects as those prepared by the second
method. The infrared spectra again showed a broad band near
3300 cm™. The agreement of the analysis with the expected
values is relatively poor, which may perhaps be ascribed to dif-
ficulties in separation or to the instability of the compound.
Anal. Caled: C, 43.64; H, 3.86. Found: C, 46.3, 45.6,
45.0; H, 6.28, 5.69, 5.92. However, the subsequent X-ray
analysis establishes that this formula is the correct one.

Preliminary Investigation: Unit Cell and Space Group.—
The crystals, which were mounted in sealed capillaries, were ex-
amined on the precession camera. The monoclinic crystals
have the following cell constants: ¢ = 20.00 &= 0.02, b = 15.03 =
0.03, ¢ = 19.26 = 0.03, 8 = 94.3 = 0.4°. Precession photo-
graphs established the following conditions for the systematic
absences: Akl, b + k ¢ 2n; KOl 1 # 2n. These conditions
are in agreement with those of the two space groups® Ce (No. 9)
and C2/c (No. 15), only the latter having a center of symmetry.

The volume of the cell is 5780 A3, The density was difficult to
determine as only small quantities of the material were available
and the compound was highly soluble in or reactive toward sol-
vents ordinarily used for density determination by the flotation
method. From the experimental work, a density of 1.4 = 0.1
was estimated. If reasonable allowance is made for the intro-
duction of H,0, we may estimate from the density of 1.45 & 0.05
for [Co(AA):]s that the density of Co(AA)HO is ~1.35 = 0.05.
Using this figure the number of Co(AA);H:0 groups in the unit
cellis 16.5 = 0.6.

Data Measurement.—The crystal was removed from the
Buerger camera and placed on the General Electric XRD-5 dif-
fractometer. The stationary-crystal, stationary-counter tech-
nique'® was used to collect data. The mosaic spread was checked,
and with a take-off angle of 7° all reflections below 50° in 28
could be measured by this technique.

Since the number of positional parameters is only half as great
in the centric as in the acentric space group, an attempt was made
to distinguish between the two possibilities prior to the comple-
tion of data collection. The data for each of the principal zones
was subjected to the statistical test of Howells, Phillips, and
Rogers," and in each case the presence of a center of inversion
was indicated. Therefore, three-dimensional data were col-
lected on the assumption that the space group was C2/c.

The data were collected using Mo K« radiation and the scin-
tillation detector. Unfortunately, the noise level of the amplifier
became excessive after the measurement of about 600 reflections.
A pulse-height selector was obtained, and the remaining data
were collected using the analyzer to remove the noise. The two
portions of the data were scaled independently in later calcula-
tions. The absorption of molybdenum radiation is negligible
when a relatively small crystal is used (u = 15 em™!)., The
crystal was 0.30 X 0.18 X 0.12 mm with the unique axis parallel
to the long dimension of the crystal and coincident with the
rotation axis of the goniometer.

Over 2200 reflections in the sphere bounded by (sin 8)/N =
0.45 were measured. The settings necessary for these measure-
ments were calculated using MIXG-2.12 Two reflections were
chosen as standards and checked frequently for any sign of de-
composition. The values of the peak and the background for
each reflection were punched onto the MIXG-2 cards and used
as input to RAWRE-2.1% The values of ]Fo} 2 obtained were used

(9) “International Tables of Crystallography,” Vol. 1, Kynoch Press,
Birmingham, England, 1952,

(10) T. C. Furnas, Jr., “Single Crystal Orienter Instruction Manual,”
X-Ray Department, General Electric, Co., Schenectady, N. Y., 1957,

(11) The statistical test was performed using “MICAST-Crystallographic
Acentricity Statistical Test,”’ a program for the IBM 709/7090 comptter by
R. C. Elder. IBM SHARE library distribution No. 3269, March 1965.

(12) D. P. Shoemaker, “MIXG-2-MIT X-Ray Goniometer Package,”
setting program for the IBM 709,/7080 computer 1962.

(13) R. C, Elder, “RAWRE-2-Raw Data Reduction Program for the
IBM 709/7090 Computer,” 18964, This program computes for each reflec-
tion the product of the reciprocal Lorentz polarization factor times the
value of the peak minus the background and times a weighting factor if
desired.
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to compute the Patterson function.!* Also, the full set of three-
dimensional data was used with MICAST,! and again the centric
space group was indicated.

Structure Determination.—The general position in C2/c gives
rise to the Harker® line 0, 2v, !/z and to the Harker plane 2x, 0,
t/y 4+ 22. Eighteen peaks were observed in the Patterson func-
tion; all peaks had x values in the range 0.000~0.100 or the range
0.433-0.500. From these, the peaks corresponding to the
Harker line and plane for the general position were sought.
For the two cobalt atoms the following coordinates were deduced:
0.216, 0.666, 0.533, and 0.250, 0.333, 0.450. A Fourier func-
tion was then calculated!* using signs for all reflections based
upon the contribution of cobalt atoms at these positions. Aftera
very careful examination of the Fourier map, it was possible to
assign positions for all atoms in the structure except hydrogen
atoms,

The positions for all atoms were now used to calculate signs for
a Fourier synthesis on a fine grid (60th of the cell edges). The R
valuels " was about 0.38 using these initial positional parameters.
The positional parameters were refined twice by Fourier methods,
and then all atom positions were refined with equal weights for
three cycles of least squares yielding a residual of 0.25.

The weighting scheme of Burnham?® for counter-diffractometer
data was used for one cycle of refinement and gave wR = 0.14
and R = 0.40, thus showing that counting statistics were not the
major cause of error in most of the data.

A second weighting scheme, that of Cruickshank!® in which
w = f(‘Fo}) such that the condition wA = constant is fulfilled,
was used for five cycles of refinement of all parameters and gave
wR = 0.20 and R = 0.23. At this point a difference Fourier
synthesis was computed. It gave clear evidence of anisotropic
thermal vibrations. Six cycles of refinement with anisotropic
thermal parameters for cobalt and oxygen atoms yielded wR =
0.16 and R = 0.18.

The weighting scheme was changed to a hybrid® of the Burn-
ham and Cruickshank schemes. An attempt to refine the aniso-
tropic thermal parameters of the carbon atoms was unsuccessful
as almost half of the parameters did not test as positive-definite.
Since it seemed that the data were not adequate to warrant
such refinement, no further attempt was made. The cobalt and
oxygen atoms which had shown amnisotropic motion in the dif-
ference Fourier map were refined without difficulty.?! In the final
two cycles, all parameters except the scale factors and the car-
bon thermal parameters were refined. The final weighted re-
sidual was 0.138. The parameters obtained and their standard
deviations as estimated in the last cycle in which they were varied
are listed in Tables I and II. The orthogonal coordinates of all
the atoms are listed in Table III. The final values of F, and
those of lFo! are given in Table IV,

The scattering curve used for cobalt was that for the dipositive

(14) W. G. 8ly, D. P. Shoemaker, and J. H. Van den Hende, ‘“A Two- and
Three-Dimensional Crystallographic Fourier Summation Program for IBM
709/7090 Computer-ERFR-2,” 1962.

(15) M. J. Buerger, “Vector Space and Its Application in Crystal Struc-
ture Investigation,” John Wiley and Soms, Inc., New York, N. Y., 1959, p
132 ff.

(18) W. R. Busing, K. O. Martin, and H, A, Levy, “ORFLS, A Fortran
Crystallographic, Full-Matrix Least-Squares Program,’”’ 1962,

(17) The usual discrepancy factor R = E]Fo - FJ/Z]FOI and the weighted

valuewR = \/Ew(FD — Fc)i/\/Z*wFo?.

(18) C. W, Burnham, Ph.D. Thesis, Massachusetts Institute of Tech-
nology, 1961. This scheme is based on considerations of counting statistics
alomne.

(19) D. W. J. Cruickshank, et al., in “Computing Methods and the Phase
Problem in X-Ray Crystal Analysis,”” R, Pepinsky, J. M. Roberts, and J. C.
Speakman, Ed., Pergamon Press Inc., New York, N. Y., 1961.

(20) Since the agreement for reﬂecti\ons of low observed intensity was
very poor, it seemed that for these reflections the counting statistics might
be the principal source of error, and thus they were weighted by the Burn-
ham scheme, For more intense reflections, where counting errors were
insignificant, the Cruickshank scheme was used. This seemed a more
reasonable process than merely indiscriminately downweighting all values
below a certain level.

(21) The thermal parameters of one oxygen atom, RsO¢, did not test
positive-definite and so were reset. There are thus no standard deviations
available for these values,
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TABLE I
POSITIONAL AND TEMPERATURE PARAMETERS®

Atom % y z B
Coy 0.2141 (2) 0.3387(3) 0.0344(2) b
Cos 0.2471 (2) 0.3404 (4) 0.4553 (2) b
ROy 0.130(1) 0.411(1) 0.043 (1) b
R.0, 0.175(1) 0.259 (2) 0.113(1) b
R:Cy 0.040(2) 0.485(3) 0.094 (2) 10 (1)
R:Ce 0.087(2) 0.397 (3) 0.103 (2) 6(1)
R:C; 0.078(2) 0.330(3) 0.160(2) 8(1)
R.Cy 0.126 (2) 0.269 (3) 0.155(2) 4(1)
R,C; 0.100(2) 0.210(3) 0.210(2) 7(1)
Rq04 0.248(1) 0.436(2) 0.091 (2) b
Rs0s 0.302 (1) 0.269 (2) 0.036 (1) b
RyCy 0.330(2) 0.512(3) 0.159(2) 4(1)
R,Cy 0.307 (2) 0.430(3) 0.115(2) 4(1)
R.Cy 0.362(2) 0.366(2) 0.108(2) 5(1)
R.Cy 0.354(2) 0.286(3) 0.072(2) 4(1)
R;Cs 0.410(2) 0.222(3) 0.070(2) 6(1)

O 0.249 (1) 0.395(2) 0.939 (1) b
R;04 0.310(1) 0.444 (1) 0.443(2) b
R;0; 0.311(1) 0.272 (1) 0.507 (1) b
R;Cy 0.417 (2) 0.529 (3) 0.445(2) 6(1)
R;Cs 0.368(2) 0.445 (3) 0.456 (2) 5(1)
R;C; 0.411(2) 0.376(3) 0.497 (2) 7(1)
R:C, 0.372(2) 0.288(8) 0.520(2) 5(1)
R;3Cs 0.426 (2) 0.228(2) 0.569(2) 6(1)
R0 0.189 (1) 0.416 (2) 0.395(1) b
RO2 0.274 (1) 0.266 (2) 0.3870(1) b
R:Cy 0.145(2) 0.486 (2) 0.293(2) 5(1)
R,Cs 0.193(2) 0.411(2) 0.334(2) 4(1)
R4Cs 0.224 (2) 0.352 (3) 0.287(2) 5(1)
R4Cy 0.267 (2) 0.276 (3) 0.306 (2) 4(1)
R;Cs 0.299 (2) 0.213(2) 0.253(2) 5(1)

Oq 0.203 (1) 0.395(2) 0.548 (1) b

e Numbers in parentheses are standard deviations occurring
in the last digit of the parameter. ?® An anisotropic temperature
factor, found in Table 11, was used.

TABLE 11
ANISOTROPIC THERMAL PARAMETERS? X 10°
Atom Bu fB22 Bss B Bis B23

Coz 31(2) 29 (3) 45 (3) ~5(2) —5(3) —4(3)
Coz 37 (2) 23 (2) 39 (2) —3(2) ~-18(2) 1(3)
R;O1 32 (11) 41(13) 50(12) —8(9) -9(7) 26 (11)
RiO:  20(8) 77(18) 26 (9) ~16 (10) -3(7 4 (11)
R201 52 (13) 25(16) 82 (16) 24 (11) —18 (12) —30 (12)
R:0: 44 (11) 28(13) 43(11) 18 (10) —~9(8) 1(11)
O1 52 (11) 33 (14) 38(1l) —4 (11) —26(9) —10 (10)
R;O01  60(12) 11 (12) 80 (15) 15 (11) —34 (11) 25(11)
R4O: 47 (11) 55(15) 12(9) —~11(10) 5(8) 11 (11D
R40: 38(12) 38(14) 42(12) 4(9) 1(9) 5(11)
Oz 30(10) 61(16) 24 (10) 1(9) —1(8 -3 (11

e Pigures in parentheses represent standard deviations occur-
ring in the last digit of the parameter.

valence state as calculated by Watson and Freeman.?? Those
for neutral carbon and oxygen were by Hoerni and Ibers.2??

Results

The values of bond distances were calculated from
the positional parameters of Table I1I using MGEOM. %4
They are listed in Table V. The bond angles are found
in Table VI. Figure 1 illustrates the asymmetric unit
projected on the (010) plane. The asymmetric unit
consists of two parts, each of which is half a centro-
symmetric dimer. There are thus two crystallographi-

(22) R. E. Watson and A. J. Freeman, 4Acta Cryst., 14, 27 (1961).

(23) J. A, Hoerni and J. A. Ibers, ¢bid., T, 744 (1954).

(24) J. S, Wood, “MGEOM~-Molecular Geometry Program for the IBM
709/7090/7094 Computer,” 1964,
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TaBLE III
ORTHOGONAL COORDINATES® OF ALL ATtoMs [Co(AA)H,0],

Atom X coord Y coord Z coord
Cox 4.23 5.07 0.65
Coz 4.28 5.11 8.69
R0, 2.52 6.16 0.82
R0, 3.31 3.88 2.18
RiCy 0.57 7.32 1.83
RiCy 1.55 6.04 1.88
R,Cs 1.32 5.06 2.95
R.iC,y 2.22 4.06 2.95
R:Cs 1.70 3.14 3.96
R,0; 4.93 6.57 1.75
RO, 6.00 4.08 0.68
R.Cy 6.34 7.76 3.08
R.Cq 6.04 6.52 2.24
R.Cs 7.04 5.51 2,07
R.C, 6.97 4,34 1.37
R:C; 8.07 3.37 1.30

(o]} 5.04 5,93 —1.19
R;0; 5.63 6.64 8.45
R;0; 5.48 4.08 9.72
R;Cy 7.65 7.93 8.48
R;Ce 6.72 6.64 8.72
R;Cs 7.40 5.59 9.52
R,Cy 6.66 4.34 9.90
R3Cs 7.59 3.42 10.82
R.O; 3.20 6.23 7.53
R,0O: 4.96 3.98 7.08
R.Cy 2.48 7.28 5.60
R.C; 3.37 6.16 6.34
R.Cy 4.06 5.29 5.48
R.C, 4.83 4.19 5.89
R.Cs 5.53 3.24 4.88

02 3.26 5.89 10.48

@ The axes of the orthogonal coordinate system are chosen so
that the ¥ axis is coincident with the y axis and the Z axis nor-
mal to the xy plane. The coordinates are in angstroms,

cally independent dimers. FEach of them has the type
of structure shown in an idealized ball and stick form
in Figure 2. Each dimer is a meso molecule since the
two halves are enantiomorphs.

Several of the dimensions of the dimer differ from
one to the other of the crystallographically independent
entities by amounts which are significant in a statistical
sense (7.e., the difference is >3Z, where Z represents the
sum of the standard deviations). The most conspicuous
of such differences is that between the two Co-Co dis-
tances, which are 3.22 £ 0.01 and 3.33 = 0.01. How-
ever, it does not appear that any of the statistically sig-
nificant differences have any chemical significance.

The chelate rings are all planar (see Table VII)
within the significance of the data although there are
deviations of the methyl carbon atoms, especially in
rings 1 and 3, which are certainly significant statisti-
cally. Theseappear to be attributable to intermolecular
contacts. Once again the tendency of the metal atoms
to be outside the plane of the B8-ketoenolate ion®% is
evident, the distances ranging here from 0.14 to 0.26 A,
with a mean of 0.20 A.

The intermolecular contacts were calculated using
DISTAN, a FORTRAN program by D. P. Shoe-
maker.?8 All contacts were larger than 4.0 A, the

(25) Cf. F, A. Cotton and J. S. Wood, I'norg. Chem., 8, 245 (1964).
(26) D, P. Shoemaker, “DISTAN-Crystallographic Bond Distance,
Bond Angle, and Dihedral Angle Computer Program,” 1963,
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Figure 1.-—The asymmetric unit projected on the (010) plane,
Each separate Co(AA)H.O unit is half a centrosymmetric
dimer.

Figure 2.— An idealized (ball and stick) view of the [Co(AA .-
H,0], dimer. Heavy black lines represent the chelate rings.
The ideal octahedral geometry indicated here is distorted appreci-
ably in the actual molecules, but this sketch helps to show the
relationship of this structure to the center part of the [Co(AA )2]4
structure.

methyl-methyl van der Waal’s contact distance, and
s0 all further discussion will be about the dimer itself.

Discussion

The centrosymmetric dimer, [Co(AA)H»Ols, corre-
sponds to the central two cobalt atom units of the tetra-
meric [Co(AA).l;, with two positions which were filled
by bridges from the terminal Co(AA), units now filled
by the oxygen atoms of water molecules. The struc-
tural parameters found here are similar to those deter-
mined for [Co(AA);]s. The bridge bonds in this struc-
ture are all approximately coplanar with the chelate
rings, and thus 7 bonding should be possible for the
bridges. The average value, 2.16 A, is in good agree-
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TABLE IV: OBSERVED AND CALCULATED STRUCTURE AMPLITUDES (IN ELECTRONS X 20.9) For [Co(AA),H.0]).

W ¥ FaEs FCAL M K FOSS: FCAL W K FOBS FCAL M % FDBs FCAL W K FOBS FCAL M % FOBS FTAL M K BOBS FCAL M K FOBS FCAL M K FOBS FCAL W X FOBS FCAL K FOss FOK
esnaLs  Qessses 13 9§25 -1011 =15 5 4¢8 S&T =3 7 128 =1178 & B 92 T4 a w7 2 21031 586 B 4 204 =124 O 10 485 =543 5 956 -1018 3 5 51 =93
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TABLE V
[Co(AA)H,0], Bonp LENGTHS®?
Primary cobalt keto-oxygen Co—Ox(1)

CO1 R101 204 + 003
CO1 R102 214 =+ 003
C01 Rzol 198i 003
Co; Ry0¢ 2.03£0.03
Cop R;01 2.06+=0.03
Cop R3O0 1.89£0.03
Coq R,O, 1.94 -4 0.03
COz R40z 2. 08 + 0.03
Av. 2.02

Secondary or bridging cobalt keto-oxygen bonds Co~Ox(2),

C02 R:}OQC 2.20 = 0.03
C01 RQOQC 2.12 £+ 003
Av2.16
Cobalt water-oxygen Co-Ogm,o
Coy O 2.194+0.03
Cos 0 2.20=+0.03
Av 2.20
Oxygen-carbon bonds
R0y RiC: 1.43%+0.05 RO, RiCs 1.344+0.05
R,0; R,C;, 1.21+£0.05 Re0: RyCy 1.22+£0.04
R;0: R;C, 1.12+£0.05 R;0s RyCy 1.23£0.05
R.O, R:C; 1.20£0.04 RO RCy 1.21£0.05
Av1.25
Ring carbon—carbon bonds
RiCo RiC; 1.46+0.05 RiC; RCy 1.33:=20.06
RyCo RoCy 1.43+=20.00 RsCy; ReCs 1.37=0.05
R;C, R:Cy  1.48+=0.06 R:C; RiCy 1.50=+=0.08
R4C, RC; 1.40+0.00 RC; RCy 1.40£0.05
Av1.42
Terminal carbon g-carbon bonds
R,Cy RiC; 1.62+£0.08 RiCy RCy  1.47 £0.07
R,C, RoCy 1.53£20.06 R.Cy ReC; 1.47+=0.06
R;Cy R;Cy  1.614£0.07 RiC: RsCy;  1.60=x=0.07
R:C, R;C, 1.61+0.00 RCs RuC; 1.56+=0.06
Av1.56
Cobalt—cobalt distances
CO1 COlc 3. 33 =+ O . 04
Cos Coxe  3.22+£0.04

o Including contribution from uncertainties in unit cell dimen-
sions. °® Subscript C indicates an atom related by the center of
symmetry to the one designated. ¢ These oxygens form
secondary bonds also.

ment with the 2.13 A found in [Co(AA),], for a Co—-Ox
(2)p type and is significantly shorter than the value of
2.24 A found for the bridge bonds in which multiple
bonding is not possible. The average Co—Co distance in
the present case is 3.27 A, to be compared with 3.57 A
for the distance between the comparable pair of Co
atoms in the tetramer. While this is a rather large
difference, it seems to be of little importance in itself,
being due chiefly to the fact that the O-Co-O angles in
the four-membeied rings are ~69° in the tetramer and
~~76° in the dimer. Within the relatively large stand-
ard deviations, nearly all ‘“‘chemically equivalent"
internuclear distances differ by less than twice the sum
of their standard deviations, there being three cases in
which the differences are just slightly larger than this.

The structure of the [Co(AA);(H;0)], molecule is of
considerable interest in respect to understanding the
structural aspect of the degradation of the tetrameric

Inorganic Chemistry

TaBLE VI
Bonp AxcrEs Iy [Co(AA)H.0], (DEG)?
Std dev

Atom A Atom B Atom C Angle ABC ABC
R;O1 Coy RO, 82.7 0.7
R101 C01 R201 81.3 0.8
R0 Co, R:040 111.8 0.7
RO, Co; Oy 100.0 0.7
R0, Coy R20; 100.3 0.8
R,0: Coy R:0, 95.5 0.7
R,0; Co; R:0q¢ 88.5 0.7
R201 CO] R202 93 .0 0 . 7
R,0, C01 O, g2.1 0.7
R;0; Coy O 82.8 0.7
R:0. Co; R:0s0 74.0 0.9
RzOgC C01 01 79.0 0.7
Co,C Coy 0, 78.8 0.5
RgO1 C02 Rso_fg 92.8 0.7
R;0, Coq RO, 82.2 0.7
R30,; Co. R4O; 95.6 0.7
R:;O1 C02 Oz 97.8 0.7
R;0: Cog R4O. 85.5 0.7
R;0. Cos O, 92.6 0.7
R;0; Cos R;04¢ 76.5 1.0
R401 COZ R40z 91.6 0.7
R,O; Coq O, 91.2 0.7
ROy Coy R;304¢ 108.6 0.7
R4O,2 CO2 RgOzc 90.4 0.6
Oz COZ RaOgc 76.1 0.6
COzc COz Oz 76.1 0.6
RiCy RiCy RO 108.2 2.6
R;0, R,C; RiCy 133.7 3.0
RiG; R,C, R,0, 129.4 2.8
Ri0g RiCy RiC; 126.6 2.7
R.Cy R.Co R0 111.4 2.5
R0, R.C, R2C; 128.8 2.7
R.Cs R:Cy R;0, 120.6 2.5
R0, R.C R.C; 115.4 2.5
R;Cy RsCe R;0; 121.5 2.9
R0, R;Cs R;sCs 125.2 3.0
R3C3 R;C, R;30; 128.1 2.9
R;30: R;Cs R;sC; 121.6 2.7
R,Cy R.Ce RO, 109.4 2.3
RO R.C: R.C, 135.2 2.6
R4Cy R.C, R.O; 118.9 2.6
R:0, R4Cy R4Cs 118.9 2.4

e Subscript C indicates an atom related by the symmetry
center to the atom designated.

[Co(AA),], to monomeric Co(AA); and Co(AA);D,,
where D may be H,O or an amine. It is to be noted
that the structure determined here is a different isomer
from that proposed” for the dimeric cyclohexylamine
(CHA) complex, [Co(AA),(CHA)],. The structure
suggested for the latter was preferred because it ap-
peared to account for the dissociation of this compound
into presumed square pyramidal monomers with a
minimum of rearrangement. However, this is not a
very compelling line of argument, and it is entirely pos-
sible that [Co(AA),(CHA)], may have a structure
similar to that reported here for [Co(AA):(H,0)],.
However, a discussion of the structural changes which
might occur in the stepwise degradation of [Co(AA):]s
to Co(AA):(H;0), is best deferred until the identity and
structure of [Co(AA).]p3(HeQ) are established since
the course of events would have to be quite different
for each of the possible formulas and corresponding
structures. It might, however, be suspected from the
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TaARLE VII
“BesT PLANES” OF LIGANDS

Distances to origin
N =0.611 D =25.34

Direction cosines
L =0,5867 M= 0.552

Distances of atoms from plane

R;0, -0.011
R102 0011 C01 0258
R.C, 0.022 R;Cy 0.139
R:Cs 0.013 R,C;s —-0.221
R,Cy —~0.036

L = —0.383 M = 0.493 N =078 D= —38.76
RO, 0.006
R50s —0.011 Cox 0.162
R.C: —0.006 R:C, —-0.076
R.C3 —0.026 R,Cs 0.030
R.Cy 0.038

L = —0.242 M = 0.445 N =0.82 D =887
R,;04 0.003
R;0; 0.001 Co, —0.141
R;Ce —0.019 R;C, 0.119
R;Cy 0.025 R;Cs 0.138
R;Cy —-0.012

L =0.796 M = 0.602 N =002 D=6.71
RO, —0.009
R.Cq 0.009 Cos 0.235
R4Cs 0.022 R,CG —0,058
R,Cs 0.005 R.C; —0.096
R,Cy —0.028
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present structure that this compound will turn out
to be [Co(AA),;H-O, derived from [Co(AA):]s by re-
moval of one of the terminal Co(AA), groups and in-
sertion of the water molecule into the position thus
opened on one of the cobalt atoms.

The persistence of the central part of the [Co(AA),],
molecule in which two octahedra share only an edge,
while the shared faces are lost, is not necessarily sur-
prising. Although in a kinetic sense a species with
three bridging groups might be in general more stable
than one with only two, in a thermodynamic sense, the
effects of ring distortions and repulsions may tend to
cancel the advantage of additional bonding. Moreover,
the coplanar arrangement of the metal atoms and the
two chelate rings to which the bridging oxygen atoms
belong may permit a significant degree of = bonding to
occur, thus increasing the stability of this portion of the
[Co(AA);]y molecule.
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The hexacarbonylvanadate of the [V(CO).CsHe] * cation reacts with sodium tetrahydridoborate to give the red crystalline
volatile V(CO)sCe¢Hx in about 609, yield. On the basis of infrared and nmr data this is shown to be tetracarbonyl-r-cyclo-
hexadienylvanadium. Methyl-substituted cyclohexadienyl compounds V(CO)sCsHr—n(CH;). are also described, being ob-

tained by reduction of the methyl-substituted arene vanadium compounds [V(CO),CeHs—n{CHj).] *.
with NaBD, yielded the corresponding deuterated compounds.
occurs preferentially at unsubstituted positions of the aromatic ring in [V(CO);CsHs—rn( CHj)n] +.

Similar reactions
The nmr spectra suggest that the addition of hydrogen
The type of bonding be-

tween the metal and the cyclohexadienyl system and the conformation of the cyclohexadienyl ligand are briefly discussed.,

Introduction

The reactions of hexacarbonylvanadium with aro-
matic compounds to give the tetracarbonylarenevana-
dium(I) hexacarbonylvanadate(—1I), [V(CO).arene]-
[V(CO)s], have been described previously.?:?

It was conceivable that the still unknown V(CO)s-
arene compounds could be obtained by reduction of the
[V(CO)sarene]* cations. However, some attempts to

(1) Presented at the Second International Symposium on Organometallic
Chemistry, Madison, Wis., Aug. 30—-Sept. 3, 1965.

(2) PartII: F. Calderazzo, Inorg. Chem., 4, 233 (19865).

(3) F.Calderazzo, tbid., 8, 1207 (1964).

synthesize them by sodium metal or lithium tetra-
hydridoaluminate reductions were unsuccessful. In
the course of similar experiments with NaBH, it was
found instead that the vanadium cations were reduced
to a new class of complexes, namely the tetracarbonyl-
m-cyclohexadienylvanadium derivatives. The proper-
ties of these new compounds are described in the
present papet. ‘

Experimental Section

All the operations were carried out in an atmosphere of pre-
purified nitrogen.



